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Abstract

BACKGROUND: The production of fruit and vegetables rich in health-promoting components in an eco-friendly context
represents the winning answer to the world population demand for food. In this study, the effects of different treatments on
the yield and fruit chemical characteristics of tomato (Solanum lycopersicum L.) are reported. The treatments included three
inducers of plant defence responses (chitosan, Trichoderma harzianum T-22 and Bacillus subtilis QST713) applied alone or before
Cucumber mosaic virus infection. Fruit production and antioxidant compounds were investigated by ultrahigh-performance
liquid chromatography (UHPLC) and liquid chromatography–tandem mass spectrometry (LC–MS/MS).

RESULTS: Compared to control fruit harvested from untreated and healthy plants, treatment with QST713 increased the
fruit number. Furthermore, plant treatments with T22, QST713 and chitosan alone enhanced fruit carotenoids (lutein and
𝜷-carotene), ascorbic acid and phenolic acids (caffeoyl glucoside and p-coumaroyl glucoside). In parallel, compared to fruit
harvested from only CMV-infected plants, treatments with T22, QST713 and chitosan before CMV enhanced fruit ascorbic acid
and flavonoids (quercetin 3-O-xylosyl-rutinoside and rutin).

CONCLUSION: Antioxidant compounds of tomato fruit can increase with the application of the plant defence inducers, thus
protecting both the consumer and plant health.
© 2019 Society of Chemical Industry

Supporting information may be found in the online version of this article.
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INTRODUCTION
Increasing fruit and vegetable production represents a challenge
to satisfy the world population food requirement. Further-
more, many people do not eat adequate quantities of fruit
and vegetables.1 Such crops should have excellent features, not
only quantitatively but also qualitatively, reinforcing the human
body against nutrition-related disorders and diseases.

The Mediterranean climate is well suited to tomato cultivation.
Tomatoes are appreciated for their flavor and nutritional value,
and consumed as a fresh or processed product (e.g. ketchup, juice,
sauces, paste, puree).2 Furthermore, tomato fruit can be regarded
as a functional food3 because of its content of antioxidant sub-
stances, such as ascorbic acid, lycopene and phenols,4 thus play-
ing a protective role in humans against cancer as well as chronic
diseases.5–7

Indeed, antioxidants regulate levels of reactive oxygen species
(ROS) such as superoxide, hydroxyl radical, hydrogen peroxide and
singlet oxygen, which can cause cellular damage involving DNA,
proteins and lipids.8 In turn, the plant equilibrium between ROS

generation and scavenging is perturbed by stress factors, such as
pathogen infection, heavy metals, drought and high irradiance.8
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As a harmful plant pathogen, Cucumber mosaic virus (CMV)
is able to cause the necrosis of tomato fruit and reduction in
yield,9 thus provoking economic damage. For this reason, sev-
eral approaches, such as plant treatment with chitosan (CHT)
and microorganisms, can represent an engaging strategy to man-
age CMV. Chitosan is a polycationic chitin derivative molecule,
used for its plant defence-inducing, antimicrobial and film-forming
properties.10 Zhang et al.11 reported that CHT inhibited grey mould
(Botrytis cinerea) of cherry tomato fruit. In another study, Zhang
et al.12 observed that CHT treatment of fresh tomato fruit increased
total phenolic and flavonoid content. In addition, microorganisms
as biocontrol agents (BCAs) are able to control plant pathogens
(both directly and indirectly by inducing plant defence responses),
as well as to improve plant development and growth.13 Among
BCAs are recognized strains of the fungal genus Trichoderma13

and the bacterial genus Bacillus. The last can also be classified
as plant growth-promoting rhizobacteria (PGPR), acting directly,
i.e. through the mechanisms of nitrogen fixation, phosphate sol-
ubilization, siderophore and phytohormone production.14 Fou-
sia et al.15 demonstrated that Bacillus subtilis QST713 induced
tomato plant defence against Pseudomonas syringae pv. tomato
and increased the plant height.

Considering that CMV strain Fny, as well as CHT, Trichoderma
harzianum strain T-22 (T22) and QST713, can change the plant
physiology and metabolism, the focus of this study was to evaluate
their effect on the yield and antioxidant content of fruit, in view of
increasing the nutraceutical value of tomatoes.

MATERIALS AND METHODS
Sources and preparations of CMV and inducers
Tobacco (Nicotiana tabacum L. cv Xanthi) plants were adopted
to propagate the necrosis-causing CMV strain Fny, obtained as
indicated by Vitti et al.16 Tobacco leaves showing symptoms of
CMV-Fny were macerated in sodium citrate buffer (0.05 mol L−1,
pH 6.5) and, mechanically, the suspension was rubbed on the
pre-dusted with celite tomato leaves. Low-molecular-weight
CHT (50–190 kDa and 75–85% deacetylated) was obtained from
Sigma-Aldrich (448 869; St Louis, MO, USA). 1 g CHT powder
was dissolved in 40 mL distilled water containing 9 mL of 1 mol
L−1 acetic acid. The pH value was 5.4. Inducing CHT solution
was obtained by dissolving such stock (1 g) in distilled water
(1 L), and spraying on the leaves (10 mL per plant). Trichoderma
harzianum strain T22 (T22) as Trianum P was obtained from
Koppert (Berkel en Rodenrijs, Netherlands), while Bacillus subtilis
strain QST713 (QST713) as Serenade Max was obtained from Bayer
CropScience (Leverkusen, Germany). According to the companies’
instructions, the solutions of T22 (1.5 g 3.75 L−1 m−2) and QST713
(3.25 kg 750 L−1 ha−1) were prepared and used to drench the root
zone (105 and 108 cfu per plant, respectively).

Experimental setup
Seeds of Solanum lycopersicum var. cerasiforme were sterilized by
maintaining them for 1 min in a solution of 1% sodium hypochlo-
rite. The seeds were then placed on sterile distilled water-imbibed
moist filter paper in sterile Petri dishes to germinate. Seedlings
grown after incubation, at 4 ∘C for 24 h in the dark and at 26 ∘C
for 2–3 days, were planted in sterilized soil-filled pots. The soil was
a mixture of loam, peat and sand in the proportion 1:1:1. Plants at
the four-leaf stage were transplanted and grown in a greenhouse
(26/23 ∘C day/night, 16 h photoperiod).

Tomato fruits were collected from plants, divided and treated
following nine experimental conditions (15 plants per condition):
fruit from control (untreated and healthy) plants (Control-PF);
fruit from plants treated with T22 (T22-TPF); fruit from plants
treated with QST713 (QST713-TPF); fruit from plants treated with
CHT (CHT-TPF); fruit from plants infected with CMV (CMV-TPF);
fruit from plants treated with T22 and CMV-infected after 7
days from T22 treatment (T22-CMV-TPF); fruit from plants treated
with QST713 and CMV-infected after 7 days from QST713 treat-
ment (QST713-CMV-TPF); fruit from plants treated with CHT and
CMV-infected after 24 h from CHT treatment (CHT-CMV-TPF); fruit
from plants treated with T22 and QST713 at the same time
(T22+QST713-TPF).

Treatments were performed from the tenth day after transplan-
tation. Carotenoid, ascorbic acid and polyphenol (as well as total
phenol) determinations were carried out in ripe tomato fruit, har-
vested 55 days after the (first) treatment on the plant.

Fruit weight and morphology
Ripe tomato fruits were harvested with 0.1 cm pedicel attached,
starting from 55 days to 6 months after the (first) treatment
on the plant. Fruit weight was determined using a digital scale
(accuracy 0.01 g), while the measurements of the fruit polar and
equatorial diameters were carried out using a Vernier caliper
(accuracy 0.1 cm). The polar diameter was measured from the
cutting point to the stigma position, while the equatorial diameter
was measured considering the widest circumference of each fruit.

Carotenoid quantification
Sample preparation
Each sample (peel and pulp) was lyophilized for 24 h (LyoQuest-55,
Telstar Technologies, Spain), reduced to a fine dried powder and
kept at −20 ∘C until analysis. Dry sample (1 g), containing 0.1%
butylated hydroxytoluene (BHT) as an antioxidant, was sonicated
for 5 min with 10 mL hexane–ethyl acetate (1:1, v/v) and cen-
trifuged at 19 000× g for 15 min at 25 ∘C. The supernatant was
removed and the solid residue was re-extracted with fresh extrac-
tion solvent, applying the same conditions. The whole procedure
was repeated three times.17

Chromatographic conditions
Analyses using ultrahigh-performance liquid chromatography
(UHPLC) were performed on a Nexera UHPLC system (Shimadzu,
Kyoto, Japan); the quali-quantitative profile of carotenoids was
performed according to Sommella et al.,18 with few modifications.
For the quantitative analysis of carotenoids, a Kinetex® EVO
C18 column (150× 2.1 mm, 100 Å) packed with 2.6 μm particles
(Phenomenex, Bologna, Italy), was employed. The optimal mobile
phase consisted of H2O (A) and CH3OH:ACN, 30:70 v/v (B). Anal-
ysis was performed in gradient elution as follows: 0–15.00 min,
60–95% B; 15–27.00 min, 95–97% B; 27–30.00 min, 97–100%
B; 30–32.00 min, isocratic to 100% B; then 8 min for column
re-equilibration. The flow rate was 0.5 mL min−1. Column oven
temperature was set to 40 ∘C. Injection volume was 3 μL extract.
Chromatograms were monitored at 450 nm.

For their quantification, stock solutions were prepared in
CHCl3 –CH3OH (1:1, v/v); calibration curves were obtained in
a concentration range of 0.5–300 μg mL−1 with six concen-
tration levels, and triplicate injection of each level was run.
Limits of detection (LOD) and quantification (LOQ) were calcu-
lated from the ratio between the standard deviation (SD) and
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analytical curve slope multiplied by 3.3 and 10, respectively.
For lutein: y = 0.0001x − 0.4694, linear correlation coefficient
(R2) = 0.9993, LOD = 0.211 μg mL−1, LOQ = 0.638 μg mL−1; for
lycopene: y = 0.0001x −4.8689, R2 = 0.9991, LOD = 0.654 μg mL−1,
LOQ = 1.981 μg mL−1; for 𝛽-carotene: y = 0.0001x − 0.4081,
R2 = 0.9991, LOD = 0.344 μg mL−1, LOQ = 1.042 μg mL−1. The
amount of compounds in the fruit was expressed as milligrams
per kilogram of dried extract.

Ascorbic acid quantification
Sample preparation
Dry sample (500 mg) was treated with 20 mL of 3% (w/v)
metaphosphoric acid (HPO3). The resulting solution was shaken
for 30 min at 25 ∘C and centrifuged at 22 000 × g for 10 min. The
supernatant was collected, filtered on 0.45 μm nylon membrane
filters and injected into the HPLC system.19

Chromatographic conditions
UHPLC analyses were performed on a Shimadzu Nexera UHPLC sys-
tem, using a 150× 4.6 mm (2.7 μm) Ascentis® RP-Amide column
(Supelco, Bellefonte, PA, USA) and setting the detector at 230 nm.
Oven temperature was set to 35 ∘C. The mobile phase consisted
of H2O+ 25 mmol L−1 NaH2PO4 (pH 3 with H3PO4) (A) and ACN (B).
The flow rate was 0.8 mL min−1 and the injection volume was 3 μL
sample. To determine the ascorbic acid content in tomato fruit,
the analysis was performed in gradient elution: 0.01–4.00 min,
isocratic to 2% B; 4.00–4.50 min, 2–95% B; 4.50–6.50 min, iso-
cratic to 95% B; then isocratic to 2% B for column recondition and
re-equilibration.

Instrumental calibration for the quantitative analysis was carried
out using the external standard method, adopting the ascor-
bic acid as standard. The calibration curve was obtained in a
concentration range of 10–200 μg mL−1 and triplicate injec-
tion was run (y = 0.0001x + 0.5390, R2 ≥ 0.9983). The amount
of ascorbic acid was expressed as milligrams of vitamin C per
gram of sample.

Total phenolic content
Total phenols were spectrophotometrically determined using the
Folin–Ciocalteu method and catechol as standard. Each fruit
(peel and pulp) was crushed and homogenized in 80% methanol
+1% HCl solution by continuous stirring at 30 ∘C for 75 min.
Homogenate was centrifuged for 15 min at 1000 × g and the
supernatant was saved. 16 μL supernatant was diluted to 320 μL
with water. 60 μL Folin–Ciocalteu reagent was added and the
solution was left for 3 min. 200 μL of a 20% sodium carbon-
ate solution was added and the resulting solution was mixed.
Absorbance was measured at 650 nm after a dark incubation
for 1 h.

Polyphenolic compound quantification
Sample preparation
Dry sample (1 g) was sonicated for 15 min with 10 mL
methanol–water (80:20, v/v) at room temperature, and cen-
trifuged at 19 000 × g for 20 min at 25 ∘C. The supernatant was
collected and the extraction procedure was repeated three times
for the complete recovery of polyphenolic compounds. The super-
natants were combined, filtered on 0.45 μm filters (Phenex®-RC,
Phenomenex) and injected.20

Identification of polyphenols by liquid chromatography–tandem
mass spectrometry (LC-MS/MS)
LC-MS/MS analyses were performed on a Shimadzu Nexera
UHPLC system coupled online to a liquid chromatography–mass
spectrometry ion trap time-of-flight instrument through an
electrospray ionization (ESI) source. The identification of polyphe-
nolic compounds was performed according to Sofo et al.,21 with
slight modifications. Mobile phases were (A) H2O and (B) ACN,
both acidified by acetic acid (0.1%, v/v). Analysis was performed
as follows: 0–10.00 min, 5–30% B; 10–12.00 min, 30–70% B;
12–13.00 min, 70–90% B; 13–14.00 min, isocratic to 90% B;
14–14.01 min, 90–5% B; 14.01–18.00 min, isocratic to 5% B. Flow
rate was 0.4 mL min−1. Column oven temperature was set to 45 ∘C.
Injection volume was 2 μL. MS detection was operated in negative
ESI mode with the following parameters: detector voltage, 1.55 kV;
Curved Desolvation Line (CDL) temperature, 250 ∘C; block heater
temperature, 280 ∘C; nebulizing gas flow (N2), 1.5 L min−1; drying
gas pressure, 100 kPa. Full-scan MS data were acquired in the
range 150–1200 m/z and MS/MS experiments were conducted
in data-dependent acquisition; precursor ions were acquired in
the range 170–800 m/z. Identification was carried out on the
basis of standard retention time, UV spectra, comparing MS/MS
data with those in the literature, and using Formula Predictor
software (Shimadzu).

Quantification of polyphenolic compounds
Ultra-pressure liquid chromatography photodiode array (UPLC
PDA) analyses were performed on a UPLC Acquity I-Class sys-
tem (Milan, Italy) consisting of a Waters Acquity binary solvent
manager, sample manager (FL), column manager (CM-A), PDA
eLambda detector (equipped with a 500 nL detector flow cell vol-
ume), Acquity QDa detector and a degassing system. The whole
configuration was driven by MassLynX v4.0 from Waters Corpora-
tion.

For the quantitative and qualitative analysis of polyphenolic
compounds, a Kinetex® EVO C18 100× 2.1 mm (100 Å) col-
umn packed with 1.7 μm particles (Phenomenex, Bologna,
Italy) was employed. The optimal mobile phase consisted of
0.1% CH3COOH–H2O v/v (A) and 0.1% CH3COOH–ACN v/v (B):
0–8.00 min, 2–30% B; 8–9.00 min, 30–95% B; 10–10.01 min,
95–2% B; then 3 min for column re-equilibration. The flow rate
was 0.5 mL min−1. Column oven temperature was set to 45 ∘C.
Injection volume was 2 μL extract. The following PDA parameters
were applied: sampling rate, 20 points s−1; resolution, 1.2 nm. Data
acquisition was set in the range 210–600 nm and chromatograms
were monitored at 280 and 330 nm at the maximum absorbance
of the compounds of interest.

For the quantification of polyphenol compounds, five com-
pounds were selected as external standards (0.5–250 μg mL−1):
chlorogenic acid, kaempferol, naringenin, quercetin and rutin. A
triplicate injection was run. The amount of compounds in the sam-
ple was expressed as milligram per gram of extract.

Statistical data analysis
Data normal distribution was tested using the Shapiro–Wilk test
(P≤ 0.05) and homoscedasticity using Bartlett’s test (P≤ 0.05).
Data were analysed by one-way analysis of variance (ANOVA),
parametric and non-parametric, performing Tukey’s HSD and
Kruskal–Wallis test, respectively. Statistical data analyses were car-
ried out using RStudio software, version 1.0.136 (Integrated Devel-
opment for R; Boston, MA, USA).
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Figure 1. Number of ripe tomato fruit collected from 55 days to 6 months after the (first) plant treatment with inducers or CMV. Nine different experimental
conditions were examined: fruit from control (untreated and healthy) plants (Control-PF); fruit from plants treated with T22 (T22-TPF); fruit from plants
treated with QST713 (QST713-TPF); fruit from plants treated with CHT (CHT-TPF); fruit from plants infected with CMV (CMV-TPF); fruit from plants treated
with T22 and CMV-infected after 7 days from T22 treatment (T22-CMV-TPF); fruit from plants treated with QST713 and CMV-infected after 7 days from
QST713 treatment (QST713-CMV-TPF); fruit from plants treated with CHT and CMV-infected after 24 h from CHT treatment (CHT-CMV-TPF); fruit from
plants treated with T22 and QST713 at the same time (T22+QST713-TPF).

RESULTS AND DISCUSSION
Attention to the antioxidants in human health has motivated stud-
ies in horticulture and food science to evaluate fruit and vegetable
antioxidants, and to assess how their characteristics can be influ-
enced through cultivar development, production practices, stor-
age and food processing.22 This study reports the quantitative and
qualitative effects on tomato fruit of plant treatments with the
defence inducers CHT, T22, QST713 and the pathogen CMV.

Fruit production
Tomato fruit size, determined as weight or diameter, is conditioned
by genetic and environmental factors.23 Cell division and expan-
sion processes determine cell number and size, respectively.24

To increase yield, the positive effect of Trichoderma viride and
Pseudomonas fluorescens, alone or combined, have been reported
by Tanwar et al.25 Our results showed that QST713-CMV-TPF and
T22+QST713-TPF were produced in the highest quantities (Fig. 1).
This result is in agreement with Almaghrabi et al.,26 who observed
an enhanced number of tomato fruit per plant after treatment
with Bacillus spp., Pseudomonas spp. and Serratia marcescens. Stim-
ulation of marigold flower production by Bacillus subtilis BEB-13

has also been reported,27 thus supporting the hypothesis that
QST713 plays a role in the promoting plant flowering. Our results
also showed that CHT-TPF was produced in greater quantity (17%),
compared to control-PF (Fig. 1). This finding is in accordance with
the increased number of flowers per plant and number of fruit per
plant observed after CHT foliar application to tomato plants by
Sathiyabama et al.28

The weight of CHT-CMV-TPF was significantly higher than that of
all the other fruit (Fig. 2), although CHT-CMV-TPF was produced in
the lowest quantity (Fig. 1). T22-CMV-TPF was the lightest (Fig. 2).

No significant difference was observed in the polar and equato-
rial diameters between control-PF, T22-TPF and T22+QST713-TPF
(Figs 3 and 4). Furthermore, no significant change in diam-
eter was observed between QST713-TPF and control-PF
(Figs 3 and 4), as obtained by Karakurt et al.,29 who evalu-
ated the Bacillus subtilis OSU-142 tree application effect on
sour cherry. Hence our findings demonstrated that T22 and
QST713 were ineffective as fruit size promoters, both alone and
combined. CMV-TPF size was smaller than that of control-PF,
even if not significantly (Figs 2–4). Interestingly, CHT-CMV-TPF
and T22-CMV-TPF showed the largest and smallest size,
respectively (Figs. 2–4).

Figure 2. Weight of tomato fruit. Mean values (32≤ n≤ 90) are represented. Standard deviations are represented by bars. Significant differences (P≤ 0.05)
among treatments are indicated by different letters, according to non-parametric one-way ANOVA. Experimental conditions as Fig. 1.

wileyonlinelibrary.com/jsfa © 2019 Society of Chemical Industry J Sci Food Agric 2019; 99: 5541–5549
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Figure 3. Polar diameter of tomato fruit. Mean values (32≤ n≤ 90) are represented. Standard deviations are represented by bars. Significant differences
(P≤ 0.05) among treatments are indicated by different letters, according to non-parametric one-way ANOVA. Experimental conditions as Fig. 1.

Figure 4. Equatorial diameter of tomato fruit. Mean values (32≤ n≤ 90) are represented. Standard deviations are represented by bars. Significant
differences (P≤ 0.05) among treatments are indicated by different letters, according to non-parametric one-way ANOVA. Experimental conditions as Fig. 1.

Fruit carotenoid (lutein, lycopene and 𝜷-carotene) content
Plant carotenoids, such as lutein, lycopene and 𝛽-carotene, are
mainly inserted in chromoplasts and chloroplast membranes,
where color of flowers/fruit also play a role in photoprotec-
tion and photosynthesis.30 The decrease in chlorophylls and
increase in lycopene are responsible for the color change from
green to red, occurring during tomato fruit development.31

Carotenoids cannot be synthesized by animals, and the inter-
est in dietary carotenoids is due to their ability as moderators
of chronic diseases.5 The benefit of carotenoids in the human
diet has prompted plant product engineering to improve
carotenoid accumulation.32 It is known that phytohormones
(as auxin, ethylene and abscisic acid) participate in carotenoid
accumulation and regulation of ripening of tomato fruit.32

Furthermore, environmental factors (e.g. radiation intensity,
temperature and CO2 concentration) and genetic potential
can change the metabolism of carotenoid in tomato fruit.32 In
cherry tomato fruit, D’Evoli et al.33 found that lycopene con-
centration in raw pulp was about fourfold lower than in raw
skin, and similar results were obtained for 𝛽-carotene, even if
at a lower degree than lycopene. In this study, the lutein con-
tent was significantly higher in all fruit of the treated plants
compared to control-PF. Specifically, T22-TPF showed the high-
est lutein content (Table 1). The most significant difference in
lycopene amount was between T22-TPF as well as CHT-TPF,
compared to QST713-TPF (Table 1). Recently, Osano et al.34

also reported an increased lycopene content in tomato fruit

Table 1. Lutein, lycopene and 𝛽-carotene content of tomato fruit.
Mean values (n = 4)± standard deviation are represented

Condition
Lutein

(mg kg−1)
Lycopene
(mg kg−1)

𝛽-Carotene
(mg kg−1)

Control-PF 20.10± 1.39e 359.63± 5.72e 93.55± 5.01e
T22-TPF 63.40± 1.51a 584.00± 18.92a 164.33± 3.30b
QST713-TPF 46.48± 2.25c 223.75± 14.71g 151.15± 2.44c
CHT-TPF 47.85± 2.41c 555.48± 18.43a 153.80± 7.26c
CMV-TPF 29.33± 0.34d 469.85± 19.59bc 114.83± 5.07d
T22-CMV-TPF 55.70± 0.42b 446.18± 9.75cd 199.88± 1.12a
QST713-CMV-TPF 61.15± 2.00a 506.95± 31.40b 146.35± 4.40c
CHT-CMV-TPF 27.98± 0.92d 419.73± 1.09d 11.53± 0.68f
T22+QST713-TPF 52.80± 1.72b 303.20± 20.90f 113.53± 1.09d

Significant differences (P≤ 0.05) among treatments are indicated
by different letters, according to parametric one-way ANOVA.
Experimental conditions as in Fig. 1.

of pre-harvest CHT-treated plants. Finally, 𝛽-carotene can be
converted into vitamin A.35 In our study, T22-TPF, QST713-TPF,
CHT-TPF and CMV-TPF showed a significantly higher 𝛽-carotene
value compared to control-PF (76%, 62%, 64% and 23%, respec-
tively; Table 1). The significantly lowest 𝛽-carotene value was in
CHT-CMV-TPF (Table 1).
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Table 2. Ascorbic acid content of tomato fruit. Mean values
(n = 4)± standard deviation are represented

Condition
Ascorbic

acid (mg g−1)

Control-PF 2.19 ± 0.03i
T22-TPF 3.60 ± 0.02e
QST713-TPF 4.57 ± 0.05a
CHT-TPF 3.06 ± 0.06h
CMV-TPF 3.47 ± 0.03f
T22-CMV-TPF 3.97 ± 0.07c
QST713-CMV-TPF 4.39 ± 0.03b
CHT-CMV-TPF 3.80 ± 0.02d
T22+QST713-TPF 3.29 ± 0.05g

Significant differences (P≤ 0.05) among treatments are indicated by
different letters, according to parametric one-way ANOVA. Experimen-
tal conditions as in Fig. 1.

Fruit ascorbic acid (vitamin C) content
Absence of L-gulonolactone oxidase does not allow humans to
synthesize ascorbic acid. Furthermore, it is water soluble and
not stored in the human body.36 Ascorbic acid is involved in
several mechanisms, such as collagen maintenance, carnitine
and catecholamine synthesis, cholesterol transformation, com-
mon cold prevention or relief and scurvy prevention.36 Gahler
et al.37 reported that vitamin C was lost during production of
tomato juice and baked tomatoes owing to its heat instability. The
results demonstrate that the ascorbic acid content of T22-TPF and
QST713-TPF were significantly higher than that of control-PF (64%
and 109%, respectively) (Table 2). Interestingly, the ascorbic acid
content of T22+QST713-TPF was significantly higher than that of
control-PF (50%) but lower than that of T22-TPF and QST713-TPF
(−9% and− 28%, respectively) (Table 2). Also, the ascorbic acid
content of CHT-TPF was significantly higher (40%) than that of
control-PF (Table 2). A similar result was obtained by Almunqedhi
et al.,38 who used CHT spray applications during the pre-harvest
phase. As a defence response to the virus, Fujiwara et al.39 reported
an accumulation of ascorbic acid in Brassica rapa plants resis-
tant to Turnip mosaic virus. Finally, all the treatments provided
fruit that was significantly higher in ascorbic acid than control-PF
(Table 2).

Fruit total phenolic content
Plant phenolics are mainly involved in resistance to pathogens,
growth, reproduction and pigmentation mechanisms.40

In our study, the total phenolic content of CHT-CMV-TPF was
significantly higher (79%) than that of CHT-TPF, the highest and
the lowest value respectively (Fig. 5). Total phenols of CHT-TPF
were significantly lower than those of control-PF (Fig. 5). Differ-
ently, the CHT coating enhanced the total phenolic content of
table grapes during storage for 60 days at 0 ∘C.41 No significant
difference in phenol amount was observed between T22-TPF,
QST713-TPF, T22+QST713-TPF and control-PF (Fig. 5). Differently
from our results, Rahman et al.42 observed that Bacillus amyloleque-
faciens BChi1 and Paraburkholderia fungorum BRRh-4 significantly
increased the total phenolic content in strawberry fruit.

Fruit polyphenolic compounds content
Plant polyphenols include phenolic acids, flavonoids, lignans and
stilbenes, also associated with organic acids and carbohydrates.43

The flavonoid family includes flavanonols, flavanols, isoflavones,
flavonols, flavones, flavanones and anthocyanidins. Among the
main dietary flavonols, there are kaempferol (found in tea and
beans, for example) and quercetin (found in onions and chocolate,
for example).44 The results showed that fruit of treated plants
had a caffeoyl glucoside content significantly higher than that of
control-PF; in particular, T22 + QST713-TPF had the significantly
highest content (Table 3). Quantities of p-coumaroyl glucoside
detected in control-PF and CHT-CMV-TPF were significantly
lower than those determined in fruit of the other treated plants,
and particularly CHT-TPF had the significantly highest content
(Table 3). Moghadam et al.45 reported the wound healing poten-
tial of chlorogenic acid isolated from Parrotia persica. In our case,
the content of 3-O-caffeoylquinic acid and 5-O-caffeoylquinic
acid detected in T22-TPF was significantly higher than that
detected in fruit of other plants; in addition, the significantly
lowest quantity of caffeoylquinic acid (isomer) was detected in
T22+QST713-TPF (Table 3). The lowest and significantly high-
est content of quercetin 3-O-xylosyl-rutinoside were detected
in control-PF and QST713-CMV-TPF, respectively (Table 3). The
significantly highest rutin content was detected in all fruit har-
vested from the treated and then infected plants (referring to
T22-CMV-TPF, QST713-CMV-TPF and CHT-CMV-TPF) (Table 3).
Mikulic Petkovšek et al.46 obtained higher rutin content in apple
leaves infected by Venturia inaequalis compared to healthy leaves.

Figure 5. Total phenolic content of tomato fruit. Mean values (n = 4) are represented. Standard deviations are represented by bars. Significant differences
(P≤ 0.05) among treatments are indicated by different letters, according to parametric one-way ANOVA. Experimental conditions as Fig. 1.
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Furthermore, we detected a significantly lower rutin content in
T22+QST713-TPF compared to T22-TPF and QST713-TPF (−31%
and−27%, respectively; Table 3). Ggotek et al.7 reported a wide
scenario of rutin effects on UV-irradiated human skin fibroblasts,
including apoptotic balance regulation as well as inflammation
and redox imbalance prevention. In our study, the most sig-
nificant difference in kaempferol 3-O-rutinoside content was
between T22-CMV-TPF and CHT-CMV-TPF (Table 3). Petpiroon
et al.47 observed the promotion of keratinocyte migration by
kaempferol-3-O-rutinoside, suggesting the involvement of this
molecule in wound healing therapies. We obtained the two signifi-
cantly highest naringenin glucoside contents in T22-CMV-TPF and
T22+QST713-TPF (Table 3). Furthermore, the highest naringenin
content determined in T22+QST713-TPF was significantly higher
than that of T22-TPF and QST713-TPF (50% and 267%, respectively;
Table 3). For the first time, Álvarez-Álvarez et al.48 reported that
naringenin is naturally produced also by Streptomyces clavuligerus.
Naringenin and its glycoside naringin were assayed, evidencing
that naringenin was more efficient as a hydroxyl/superoxide
radical scavenger and demonstrated higher antioxidant capacity
than naringin. However, both flavanones equally reduced DNA
damage.49 Yilma et al.50 reported the ability of naringenin to
modulate the inflammatory responses triggered by Chlamydia
trachomatis in mouse macrophages. Chang et al.6 reported the
role of naringenin as an inhibitor of human lung cancer cell
migration. Interestingly, in leaves of cucumber plants treated
with Trichoderma atroviride TRS25, Nawrocka et al.51 observed
increased caffeoylquinic acid, rutin and naringenin quantities,
likely contributing to plant protection. We detected the sig-
nificantly highest and lowest content of naringenin chalcone
in CHT-CMV-TPF and CHT-TPF, respectively (Table 3). Iwamura
et al.52 demonstrated that naringenin chalcone, purified from red
tomato skin, suppressed allergic asthma symptoms exhibited
in mice. Malhotra et al.53 observed that flavonoids and related
compounds reduced the infectivity of tomato ringspot virus in
Chenopodium quinoa. This finding could explain the significant
increase of quercetin 3-O-xylosyl-rutinoside and rutin in fruit
harvested from treated then CMV-infected plants, compared to
fruit from the treated-only plants (Table 3), considering the plant
defence-inducing properties of T22, QST713 and CHT. Finally, a
higher flavonoid content was detected in QST713-TPF compared
to control-PF (Table 3). This finding is in accordance with Rahman
et al.,42 who also observed that plant treatments with Bacillus
amylolequefaciens BChi1 and Paraburkholderia fungorum BRRh-4
increased the flavonoid content of strawberry fruit.

Vitti et al.16 observed that tomato plants infected with CMV
exhibited a strong ROS augmentation. Although antioxidants are
known for their ability to scavenge ROS,8 unfortunately, to date
there is a lack of scientific evidence characterizing a mechanism
for the direct action of antioxidant compounds against viruses in
plants; thus further studies are needed.

However, our findings may also apply to other crops extended
to the national and international market and, overall, inducers can
reduce risks to humans and environment.

Of note, Martí et al.54 reviewed the involvement of tomato
carotenoids and polyphenols in cancer prevention, and reported
strategies to improve their content in fruit. Moreover, they also
reported some studies revealing carotenoids associated with
a higher cancer risk/incidence/mortality, manifested especially
among smokers and diagnosed breast cancer. Finally, support-
ing our study, Fraser and Bramley5 affirmed that carotenoids
from fruit and vegetables, combined with other antioxidants,
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are more efficient than dietary supplements of individual
compounds.

CONCLUSIONS
This paper reports the effects of plant treatments with CMV and
inducers of defence responses chitosan, Trichoderma harzianum
T-22 and Bacillus subtilis.

Regarding QST713 on ripe tomato fruit, overall, QST713 can be
considered as the most effective for increasing the fruit number
as well as T22 and QST713 for increasing ascorbic acid and the
majority of carotenoids and polyphenols assayed in fruit. Hence
the use of inducers can be recommended to benefit consumer and
plant health, in the context of sustainable agricultural practices.
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